首页> 外文OA文献 >Programmable Control of Nucleation for Algorithmic Self-Assembly
【2h】

Programmable Control of Nucleation for Algorithmic Self-Assembly

机译:可编程控制算法自组装的成核

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Algorithmic self-assembly, a generalization of crystal growth processes, hasbeen proposed as a mechanism for autonomous DNA computation and for bottom-upfabrication of complex nanostructures. A `program' for growing a desiredstructure consists of a set of molecular `tiles' designed to have specificbinding interactions. A key challenge to making algorithmic self-assemblypractical is designing tile set programs that make assembly robust to errorsthat occur during initiation and growth. One method for the controlledinitiation of assembly, often seen in biology, is the use of a seed or catalystmolecule that reduces an otherwise large kinetic barrier to nucleation. Here weshow how to program algorithmic self-assembly similarly, such that seededassembly proceeds quickly but there is an arbitrarily large kinetic barrier tounseeded growth. We demonstrate this technique by introducing a family of tilesets for which we rigorously prove that, under the right physical conditions,linearly increasing the size of the tile set exponentially reduces the rate ofspurious nucleation. Simulations of these `zig-zag' tile sets suggest thatunder plausible experimental conditions, it is possible to grow large seededcrystals in just a few hours such that less than 1 percent of crystals arespuriously nucleated. Simulation results also suggest that zig-zag tile setscould be used for detection of single DNA strands. Together with prior workshowing that tile sets can be made robust to errors during properly initiatedgrowth, this work demonstrates that growth of objects via algorithmicself-assembly can proceed both efficiently and with an arbitrarily low errorrate, even in a model where local growth rules are probabilistic.
机译:算法自组装,晶体生长过程的一般化,已经被提出作为自主DNA计算和复杂纳米结构的自底向上制造的机制。用于生长所需结构的“程序”由一组旨在具有特异性结合相互作用的分子“碎片”组成。使算法自组装实用的一个主要挑战是设计图块集程序,这些程序可使组装对在启动和增长期间发生的错误具有鲁棒性。在生物学中经常看到的一种用于控制组装的起始的方法是使用种子或催化剂分子,该种子或催化剂分子减少了否则对成核的大动力学障碍。在这里,我们展示了如何类似地对算法自组装进行编程,以使种子组装快速进行,但是对于非种子生长有任意大的动力学障碍。我们通过引入一组磁贴来证明这一技术,我们针对这些磁贴严格地证明了,在正确的物理条件下,线性增大磁贴组的大小呈指数减小了虚假成核的速率。对这些“锯齿”形瓦的模拟表明,在合理的实验条件下,有可能在短短几个小时内生长出较大的籽晶,从而使不到1%的晶体产生了假核。仿真结果还表明,应使用之字形瓷砖来检测单个DNA链。结合先前的工作表明瓦片集合可以在正确启动的增长过程中对错误变得健壮,这项工作表明,即使在局部增长规则具有概率的模型中,通过算法自组装的对象增长也可以高效且错误率较低。

著录项

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号